
Ars Combinatoria, 157: 109–120
DOI:10.61091/ars157-11
http://www.combinatorialpress.com/ars
Received 12 December 2023, Accepted 21 December 2023, Published 25 December 2023

Article

Independent Fixed Connected Geodetic Number of a Graph

P.Titus1,*and S.Antin Mary2

1 Department of Mathematics, University College of Engineering Nagercoil, Anna University,
Tirunelveli Region.

2 Department of Mathematics,Holy Cross College (Autonomous), Nagercoil, India.

* Correspondence: titusvino@yahoo.com

Abstract: In this paper we introduce the concept of independent fixed connected geodetic number
and investigate its behaviours on some standard graphs. Lower and upper bounds are found for the
above number and we characterize the suitable graphs achieving these bounds. We also define two
new parameters connected geo-independent number and upper connected geo-independent number of
a graph. Few characterization and realization results are formulated for the new parameters. Finally
an open problem is posed.

Keywords: independent fixed connected geodetic set, independent fixed connected geodetic number,
connected geo-independent number, upper connected geo-independent number
Mathematics Subject Classification: 05C12

1. Introduction

The introduction of Graph Theory is a revolution in the field of Mathematics. Various concepts
were made easily understandable by its simple expression through graphical models. By a graph G
we mean V , the set of vertices; E, the set of edges together with a binary operation of association.
We refer to [1–3] for basic graph theoretic terms. In G, a shortest x − y path is also known as x − y
geodesic. The distance d(x, y) is defined as the number of edges of an x − y geodesic in G. For any
two vertices x and y in G, the closed interval I[x, y] is the collection of vertices on an x − y geodesic.
The closed interval I[S , S ′], where S , S ′ ⊆ V(G), is defined as the union of subintervals I[x, y] for
some x ∈ S and y ∈ S ′. i.e., I[S , S ′] =

⋃
x∈S ,y∈S ′ I[x, y]. A vertex v in G is called an extreme vertex or

simplicial vertex if the subgraph induced by its adjacent vertices is complete.
A set S ⊆ V(G) is called a geodetic set or geodomination set if every vertex of G is on some x − y

geodesic where x, y ∈ S . The minimum cardinality of a geodetic set of G is called as the geodetic
number of G, denoted by g(G) [4–8]. If S is a geodetic set of G and ⟨S ⟩ is connected, then S is called
the connected geodetic set of G. Its minimum order is named as the connected geodetic number
of G, denoted by cg(G). A connected geodetic set of cardinality cg(G) is called a cg-set of G [9].
Again parameters upper connected geodetic number and forcing connected geodetic number were
defined and investigated in [10]. Santhakumaran and Titus first introduced the vertex geodomination
number in [11] and further studied in [12, 13]. For any vertex x in G, a set S ⊆ V(G) is called
an x-geodominating set of G if every vertex v in G is on an x − y geodesic for some y in S . The
minimum cardinality of an x-geodominating set of G is defined as the x-geodomination number of G,
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denoted by gx(G). An x-geodominating set of cardinality gx(G) is called a gx-set of G. A connected
x-geodominating set of G is an x-geodominating set S such that ⟨S ⟩ is connected. The minimum
cardinality of a connected x-geodominating set of G is the connected x-geodomination number of G
and is denoted by cgx(G). A connected x-geodominating set of cardinality cgx(G) is called a cgx-set
of G [14].

Let e = xy be any edge of a connected graph G of order atleast 3. A set S of vertices of G is an
e-geodominating set of G if every vertex of G is either on an x−u geodesic or on an y−u geodesic for
some element u in S . The minimum cardinality of an e-geodominating set of G is defined as the e-
geodomination number of G and is denoted by ge(G) or gxy(G). An e-geodominating set of cardinality
ge(G) is called a ge-set of G [15].

It is clear that x-geodominating set of G is obtained by fixing a vertex x in G and e-geodominating
set of G is obtained by fixing an edge e = xy in G. Based on these concepts we defined a new
parameter called independent fixed geodomination number (or independent fixed geodetic number)
in [16]. Let S be an independent set of a connected graph G of order atleast 2. Let S ′ be a subset of
V(G). If each vertex v in G is on an x − y geodesic for some x ∈ S and y ∈ S ′, then S ′ is an S -fixed
geodetic set of G . The S -fixed geodetic number gs(G) of G is the minimum cardinality of an S -fixed
geodetic set of G. The independent fixed geodetic number of G is gi f (G) = min {gs(G)}, where the
minimum is taken over all independent sets S in G. An independent fixed geodetic set of cardinality
gi f (G) is described as gi f -set of G. We too further proceed to infer about connectedness of an S -fixed
geodetic set of G, where S is an independent set in a connected graph G. In the computation of
independent fixed connected geodetic number, the succeeding theorems will be employed.

Theorem 1. [16] For any connected graph G, 1 ≤ gi f (G) ≤ p − 1.

Theorem 2. [16] Let G be a connected graph. Then gi f (G) = 1 if and only if there is an independent
set S and its eccentric vertex y such that every vertex of G is on an x − y geodesic for some x ∈ S .

Theorem 3. [16] For any complete graph Kp, gi f (Kp) = p − 1.

2. Independent fixed connected geodetic number

Definition 1. Let S be an independent set of a connected graph G of order atleast 2. An S -fixed
connected geodetic set of G is an S -fixed geodetic set S ′ such that ⟨S ′⟩ is connected. The S -fixed
connected geodetic number cgs(G) of G is the minimum cardinality of an S -fixed connected geodetic
set of G. The independent fixed connected geodetic number cgi f (G) of G is defined as cgi f (G) =
min {cgs(G)}, where the minimum is taken over all independent sets S in G. An independent fixed
connected geodetic set of cardinality cgi f (G) is called a cgi f -set of G.

Example 1. Consider a graph G as shown in Figure 2.1. The Table 2.1 gives the independent sets
S , their corresponding minimum S -fixed geodetic sets and minimum S -fixed connected geodetic sets,
the S -fixed geodetic numbers gs(G) and the S -fixed connected geodetic numbers cgs(G). Then the
independent fixed geodetic number of G is gi f (G) = min {gs(G)} = 2 and the independent fixed
connected geodetic number of G is cgi f (G) = min {cgs(G)} = 3.

x1

x3
x2

x6

x5

x4

Figure 2.1 : G
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Independent Minimum S -fixed S -fixed Minimum S -fixed S -fixed
set S geodetic set geodetic connected geodetic set connected

number gsG geodetic
number cgsG

{x1} {x2, x4, x5, x6} 4 {x2, x3, x4, x5, x6} 5
{x2} {x1, x4, x5, x6} 4 {x1, x3, x4, x5, x6} 5
{x3} {x1, x2, x4, x5, x6} 5 {x1, x2, x3, x4, x5, x6} 6
{x4} {x1, x2, x6} 3 {x1, x2, x3, x6} 4
{x5} {x1, x2, x4, x6} 4 {x1, x2, x3, x4, x6} 5
{x6} {x1, x2, x4} 3 {x1, x2, x3, x4} 4
{x1, x4} {x2, x6} 2 {x2, x3, x6} 3
{x1, x5} {x2, x4, x6} 3 {x2, x3, x4, x6} 4
{x1, x6} {x2, x4} 2 {x2, x3, x4} 3
{x2, x4} {x1, x6} 2 {x1, x3, x6} 3
{x2, x5} {x1, x4, x6} 3 {x1, x3, x4, x6} 4
{x2, x6} {x1, x4} 2 {x1, x3, x4} 3
{x4, x6} {x1, x2, x5} 3 {x1, x2, x3, x5} 4
{x1, x4, x6} {x2, x5} 2 {x2, x3, x5} 3
{x2, x4, x6} {x1, x5} 2 {x1, x3, x5} 3

Table 2.1

Theorem 4. In a connected graph G, 1 ≤ gi f (G) ≤ cgi f (G) ≤ p − 1.

Proof. For any independent set S in a connected graph G, every S -fixed connected geodetic set is an
S -fixed geodetic set of G, we have gi f (G) ≤ cgi f (G). Then by Theorem 1.1, we have 1 ≤ gi f (G) ≤
cgi f (G) ≤ p − 1. □

We intend to characterize the graphs that realize the bounds in Theorem 2.3. For that we use the
following definition.

Definition 2. [17] Let G be a connected graph of order atleast 2. Let S ⊂ V(G) and y ∈ V(G) − S .
The distance between the set S and the vertex y is d(S , y) = min{d(x, y) : x ∈ S }. The eccentricity
of the set S is e(S ) = max{d(S , y) : y ∈ V(G) − S }. An eccentric vertex of S is a vertex v of G with
d(S , v) = e(S ).

Theorem 5. Let G be a connected graph of order atleast 2. Then cgi f (G) = 1 if and only if there is
an independent set S and its eccentric vertex y such that every vertex of G is on an x − y geodesic for
some x ∈ S .

Proof. The result follows from Theorems 1.2 and 2.3. □

The following theorem gives cgi f (G) for some standard graphs.

Theorem 6. (i) If G = T or Km,n, then cgi f (G) = 1.

(ii) If G = Cp, then cgi f (G) is 1 or 2 according as p is even or odd.

(iii) If G = K1 + ∪m jK j with G is neither a complete graph nor a star, then cgi f (G) = j − 1 or∑
m j( j − 1) + 1 according as

∑
j≥2 m j = 1 or

∑
j≥2 m j ≥ 2.

In view of Theorem 2.3, we proceed to characterize graphs G with cgi f (G) = p − 1.

Theorem 7. Let G be a connected graph of order p ≥ 2. Then cgi f (G) = p − 1 if and only if G = Kp.
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Proof. Let cgi f (G) = p−1. Claim that G = Kp. If not, then G has a diametral path P : u0, u1, . . . , ud of
length d ≥ 2. It is clear that u0 and ud are non-cut vertices of G. If u0 or ud is an end vertex of G, then
S = {u0, ud} is an independent set of G and S ′ = V(G) − S is an S -fixed connected geodetic set of G.
Hence cgi f (G) ≤ p − 2, but this leads to a contradiction. If both u0 and ud are non-end vertices of G,
then there exist atleast two u0−ud paths in G. If atleast one vertex other than u0 and ud is common for
any two u0−ud paths in G, then S = {u0, ud} is an independent set of G and S ′ = V(G)−S is an S -fixed
connected geodetic set of G. Hence cgi f (G) ≤ p − 2, but this leads to a contradiction. Suppose that
there exist two u0 − ud paths, say P1 and P2, has no common vertices other than u0 and ud. Let z be an
adjacent vertex of u0 in P1. If z is a cut vertex of G, then let H be a component of G − z with u0 not
in H. Let z1 be a vertex farthest away from z in H. Then it is clear that S = {z1, ud} is an independent
set of G and S ′ = V(G) − S is an S -fixed connected geodetic set of G. Hence cgi f (G) ≤ p − 2, but
this leads to a contradiction. If z is not a cut vertex and {uo, z} is not a vertex-cut of G, then S = {u0}

is an independent set of G and S ′ = V(G) − {u0, z} is an S -fixed connected geodetic set of G. Hence
cgi f (G) ≤ p − 2, but this leads to a contradiction. If z is not a cut vertex and {u0, z} is a vertex-cut
of G, then there exists another u0 − z path, say Q, of length atleast 2. Let w be an adjacent vertex
of u0 on Q. If w is a cut vertex of G, then let H1 be a component of G − w with u0 not in H1. Let
w1 be a vertex farthest away from w in H1. Then it is clear that S = {w1, ud} is an independent set
of G and S ′ = V(G) − S is an S -fixed connected geodetic set of G. Hence cgi f (G) ≤ p − 2, but this
leads to a contradiction. If w is not a cut vertex and {w, ud} is not a vertex-cut of G, then S = {w, ud}

is an independent set of G and S ′ = V(G) − S is an S -fixed connected geodetic set of G. Hence
cgi f (G) ≤ p − 2, but this leads to a contradiction. If w is not a cut vertex and {w, ud} is a vertex-cut of
G, then S = {w} is an independent set of G and S ′ = V(G) − {w, u0} is an S -fixed connected geodetic
set of G. Hence cgi f (G) ≤ p − 2, but this leads to a contradiction. Converse is clear from Theorems
1.3 and 2.3. □

Now we proceed to characterize graphs G with cgi f (G) = p − 2. For that we require the definition
of a special graph Km ← Pr → Kn.

Definition 3. The graph G = Km ← Pr → Kn is obtained from two complete graphs Km,Kn and a
path Pr by joining every vertex in Km with an end vertex of Pr and joining every vertex in Kn with the
other end vertex of Pr.

The graph G = Km ← Pr → Kn is shown in Figure 2.2.

Km

Pr

Kn

Figure 2.2: G = Km ← Pr → Kn

Theorem 8. Let G be a connected graph of order p ≥ 3. Then cgi f (G) = p − 2 if and only if G is
either P3 or Km ← Pr → Kn (m, n ≥ 2 and r ≥ 1).

Proof. Let cgi f (G) = p − 2. If p = 3, then by Theorems 2.7 and 2.6(i) we conclude that G = P3. If
p = 4, then G is either K4,K2 + K̄2,K1 + (K1 ∪ K2),K1,3, P4 or C4. If G = K4, then by Theorem 2.7,
cgi f (G) = 3 = p − 1, but this leads to a contradiction. If G = K2 + K̄2, then G has two simplicial
vertices, say x and y. It is obvious that S = {x} is an independent set of G and S ′ = {y} is the minimum
S -fixed connected geodetic set of G. Hence cgi f (G) = 1 = p − 3, but this leads to a contradiction.
If G = K1 + (K1 ∪ K2),K1,3, P4 or C4, then by Theorem 2.6, cgi f (G) = 1 = p − 3, but this leads to a
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contradiction.
Now, let p ≥ 5. Since cgi f (G) = p − 2, by Theorem 2.7, we have G , Kp. First, we show that

every vertex of G is either a cut vertex or a simplicial vertex. Incase there exists a vertex, say x, in
G which is neither a cut vertex nor a simplicial vertex, then x lies on a cycle in G. Let C be a largest
chordless cycle containing the vertex x in G. We consider three cases.
Case (1) Length of the cycle C is more than 3 and degree of x is 2.

Let y and z be the adjacent vertices of x on C. Since C is a chordless cycle, y and z are non-
simplicial vertices of G.
Subcase (1) deg y = deg z = 2. Let S = {x} be an independent set of G. If C is an even cycle,
then y and z is on an x − x1 geodesic, where x1 is an eccentric vertex of x on C; and if C is an odd
cycle, then y is on an x − x1 geodesic and z is on an x − x2 geodesic, where x1 and x2 are the eccentric
vertices of x on C. Then it is clear that S ′ = V(G) − {x, y, z} is an S -fixed geodetic set of G. Since
deg y = deg z = deg x = 2, ⟨S ′⟩ is connected. Hence S ′ is an S -fixed connected geodetic set of G
and so cgi f (G) ≤ p − 3, but this leads to a contradiction.
Subcase (2) deg y ≥ 3 and deg z ≥ 3. Since deg x = 2, G − x is a connected graph. If y and z are cut
vertices of G, then let G1 and G2 be the components of G − y and G − z, respectively, with the vertex
x not in both G1 and G2. Let y1 be a vertex farthest away from y in G1 and let z1 be a vertex farthest
away from z in G2. Then it is vivid that S = {x, y1, z1} is an independent set of G and S ′ = V(G) − S
is an S -fixed connected geodetic set of G. Hence cgi f (G) ≤ p − 3, but this leads to a contradiction.

If y and z are non-cut vertices of G and {y, z} is a vertex-cut of G − x, then y, x and z are the
consecutive vertices of another chordless cycle, say C′, in G. Let z′ , x be an adjacent vertex of z on
C′. If z′ is a non-cut vertex of G, then S = {x, z′} is an independent set of G and S ′ = V(G)−{x, z, z′} is
an S -fixed connected geodetic set of G. Hence cgi f (G) ≤ p − 3, but this leads to a contradiction. If z′

is a cut vertex of G, then let G3 be a component of G−z′ with the vertex z not in G3. Let z′′ be a vertex
farthest away from z′ in G3. Then S 1 = {x, z′′} is an independent set of G and S ′1 = V(G)− {x, z, z′′} is
an S -fixed connected geodetic set of G. Hence cgi f (G) ≤ p − 3, but this leads to a contradiction.

If y and z are non-cut vertices of G and {y, z} is not a vertex-cut of G − x. It is clear that S = {x}
is an independent set of G and S ′ = V(G) − {x, y, z} is an S -fixed connected geodetic set of G and
so cgi f (G) ≤ p − 3, but this leads to a contradiction. If either y or z is a cut vertex of G, then by the
arguments similar to the above, we get a contradiction.
Subcase (3) deg y = 2 and deg z ≥ 3 ((or) deg y ≥ 3 and deg z = 2). If z is a cut vertex of G, then let
G1 be a component of G − z with the vertex x not in G1. Let z′ be a vertex farthest away from z in G1.
Then S = {x, z′} is an independent set of G and S ′ = V(G)− {x, y, z′} is an S -fixed connected geodetic
set of G and so cgi f (G) ≤ p − 3, but this leads to a contradiction.

If z is not a cut vertex of G, then clearly S = {x} is an independent set of G and S ′ = V(G)−{x, y, z}
is an S -fixed connected geodetic set of G. Hence cgi f (G) ≤ p − 3, but this leads to a contradiction.
Case (2) Length of the cycle C is more than 3 and degree of x is more than 2.
Subcase (1) {x, y} and {x, z} are non vertex-cuts of G. Then it is clear that S = {x} is an independent
set of G and S ′ = V(G) − {x, y, z} is an S -fixed connected geodetic set of G. Hence cgi f (G) ≤ p − 3,
but this leads to a contradiction.
Subcase (2) {x, y} and {x, z} are vertex-cuts of G. Then G has two more cycles, say C1 and C2, with
xy an edge of C1 and xz an edge of C2. Let x′ , y be an adjacent vertex of x on C1 and let x′′ , z
be an adjacent vertex of x on C2. If x′ is a cut vertex of G, then take a = x′1, where x′1 is a vertex
farthest away from x′ in a component H of G − x′ with x not a vertex of H. Otherwise, take a = x′.
Similarly, if x′′ is a cut vertex of G, then take b = x′′1 , where x′′1 is a vertex farthest away from x′′ in a
component H1 of G− x′′ with x not a vertex of H1. Otherwise, take b = x′′. It is clear that S = {a, b} is
an independent set of G and S ′ = V(G)− {x, a, b} is an S -fixed connected geodetic set of G. It implies
cgi f (G) ≤ p − 3, but this leads to a contradiction.
Subcase (3) {x, y} is a vertex-cut and {x, z} is not a vertex-cut of G ((or) {x, y} is not a vertex-cut and
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{x, z} is a vertex-cut of G). Then G has one more chordless cycle, say C1, with xy an edge of C1. Let
x′ , y be an adjacent vertex of x on C1. If x′ is adjacent to y in G and x′ is not a cut vertex of G, then
S = {x′} is an independent set of G and S ′ = V(G) − {x, x′, z} is an S -fixed connected geodetic set of
G and so cgi f (G) ≤ p − 3, but this leads to a contradiction. If x′ is adjacent to y in G and x′ is a cut
vertex of G, then by an argument similar to Subcase (3) of Case (1), S = {x, x′′} is an independent set
of G and S ′ = V(G)− {x, x′′, z} is an S -fixed connected geodetic set of G. Hence cgi f (G) ≤ p − 3, but
this leads to a contradiction.

Similarly, if x′ is a non-adjacent vertex of y on C1 and x′ is a non-cut vertex of G, then S = {x} and
S ′ = V(G) − {x, x′, z}. If x′ is a non-adjacent vertex of y and x′ is a cut vertex of G, then S = {x, x′′}
and S ′ = V(G) − {x, x′′, z}, where x′′ is a vertex farthest away from x′ in a component H of G − x′

with x not a vertex of H. In both cases, S is an independent set of G and S ′ is an S -fixed connected
geodetic set of G and hence cgi f (G) ≤ p − 3, but this leads to a contradiction.
Case (3) Length of the cycle C is 3.

Figure 2.3 : H

z

u

v

w

Then the graph H given in Figure 2.3 is a subgraph of G. If not, every block of G is either K2

or K3 and so every vertex of G is either a cut vertex or a simplicial vertex, which is a contradiction
to our assumption. Here we take the vertex u as x and the cycle u, v,w, z, u in H as C and continue
the procedure exactly similar to Case (1) and Case (2), we get cgi f (G) ≤ p − 3, but this leads to a
contradiction.

Hence in all the three cases we get a contradiction and so every vertex in G is either a cut vertex
or a simplicial vertex. Since cgi f (G) = p − 2, by Theorem 2.7, G is a non-complete graph. Hence G
has atleast one cut vertex. Let Q = {u1, u2, . . . , ua} be the set of all cut vertices of G. We consider two
cases.
Case (1) G has exactly one cut vertex, say u1.

Let G1,G2, . . . ,Gt(t ≥ 2) be the components of G − u1. If t ≥ 3, then S = {x1, x2, . . . , xt}, where
xi ∈ Gi(1 ≤ i ≤ t), is an independent set of G and S ′ = V(G) − S is an S -fixed connected geodetic
set of G and so cgi f (G) ≤ p − 3, but this leads to a contradiction. Hence t = 2. Now claim that
each component Gi(1 ≤ i ≤ 2) has atleast two vertices. If G1 has exactly one vertex, say v, then
S = {v, z}, where z ∈ G2, is an independent set of G. It is clear that S ′ = V(G)− {v, z, u1} is an S -fixed
connected geodetic set of G and so cgi f (G) ≤ p − 3, but this leads to a contradiction. Hence G has
exactly one cut vertex and two components with each component having atleast two vertices. Hence
G = Km ← Pr → Kn (m, n ≥ 2 and r = 1).
Case (2) G has two or more cut vertices.

Let R = {z1, z2, . . . , zl}(l ≥ 0) be the set of all cut vertices of degree ≥ 3 in G. If l = 0, then G is a
path and so by Theorem 2.6(i), cgi f (G) = 1 < p − 3, but this leads to a contradiction. Now, let l ≥ 1
and let S = {x1, x2, . . . , xb} (b ≥ max{2, l}), where xi is a simplicial vertex of G in the ith component of
G − R. If l ≥ 3, then clearly S is an independent set of G and S ′ = V(G) − S is an S -fixed connected
geodetic set of G and so cgi f (G) ≤ p − 3, but this leads to a contradiction. If l = 1, then clearly S is an
independent set of G and S ′ = V(G)− {S ∪ (Q−R)} is an S -fixed connected geodetic set of G. Hence
cgi f (G) ≤ p − 3, but this leads to a contradiction. Hence l = 2. If G − R has 3 or more components,
then S is an independent set of G and S ′ = V(G) − S is an S -fixed connected geodetic set of G and
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so cgi f (G) ≤ p − 3, but this leads to a contradiction. Hence G − R has exactly 2 components. Since
every vertex of G is either a cut vertex or a simplicial vertex, the components of G − R are complete
graphs. Since l = 2, the two components of G − R are complete graphs with atleast two vertices and
⟨R⟩ is a path. Hence G = Km ← Pr → Kn (m, n ≥ 2 and r ≥ 1).

Conversely, let G = P3 or Km ← Pr → Kn (m, n ≥ 2 and r ≥ 1). If G = P3, then by Theorem 2.6(i),
cgi f (G) = 1 = p − 2. If G = Km ← Pr → Kn, then every vertex in Km ∪ Kn is a simplicial vertex
of G. It is clear that any independent set S of G contains atmost one vertex from each Km and Kn.
Also, every S -fixed connected geodetic set of G contains atleast m − 1 vertices from Km and atleast
n − 1 vertices from Kn. Since m ≥ 2, n ≥ 2 and r ≥ 1, every vertex of Pr is an element of any S -fixed
connected geodetic set of G. Hence S ′ = V(G) − S is an S -fixed connected geodetic set of G and
so cgi f (G) ≥ p − 2. Let S 1 = {x, y}, where x ∈ V(Km) and y ∈ V(Kn), and let S ′1 = V(G) − S 1. It
is clear that S 1 is an independent set of G and S ′1 is an S 1-fixed connected geodetic set of G and so
cgi f (G) = p − 2. □

Based on Theorem 2.3, we have the following realization result.

Theorem 9. For any three positive integers a, b and p with 2 ≤ a ≤ b ≤ p − 3, it is possible to identify
a connected graph G of order p with gi f (G) = a and cgi f (G) = b.

Proof. We consider two cases.
Case (1) 2 ≤ a = b ≤ p − 3. Let Pp−a−1 : v1, v2, . . . , vp−a−1 be a path of order p − a − 1 and let Ka+1 be
the complete graph of order a + 1. Let G be the graph obtained from Pp−a−1 and Ka+1 by joining an
end vertex vp−a−1 of Pp−a−1 with every vertex of Ka+1. The resultant graph G is shown in Figure 2.4
and its order is p.

Ka+1

v1 v2 v3 vp−a−1

Figure 2.4 : G

It is clear that any independent set of G contains atmost one vertex from the complete graph Ka+1.
Also, atleast a vertices in Ka+1 lie in every S -fixed geodetic set of G, where S is an independent set
of G. Hence gi f (G) ≥ a. Let S = {v1, x} and S ′ = V(Ka+1) − {x}, where x ∈ V(Ka+1). Since a ≤ p − 3,
S is an independent set of G and it is clear that every vertex of V(G) − S is on a v1 − y geodesic for
any y ∈ S ′. Hence S ′ is an S -fixed geodesic set of G and so gi f (G) = |S ′| = a. Also, since ⟨S ′⟩ is
connected, we have cgi f (G) = gi f (G) = a.
Case (2) 2 ≤ a < b ≤ p − 3. Let Pp−a−2 : v1, v2, . . . , vp−b−2, . . . , vp−a−2 be a path of order p− a− 2. Let
K2 and Ka be two complete graphs of orders 2 and a, respectively. Let G be the graph obtained from
Pp−a−2, K2 and Ka, by joining the vertex vp−b−1 of Pp−a−2 with every vertex of K2 and joining the end
vertex vp−a−2 of Pp−a−2 with every vertex of Ka. The resultant graph G is shown in Figure 2.5 and its
order is p.

v1 v2 v3

Figure 2.5 : G

vp−b−2

vp−b−1

K2

vp−b vp−a−2

Ka
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It is clear that any independent set of G contains atmost one vertex from each complete graphs K2

and Ka. Also, atleast one vertex in K2 and atleast a − 1 vertices in Ka lie in every S -fixed geodetic
set of G, where S is any independent set of G. Hence gi f (G) ≥ a. Let S = {v1, x, y} and let S ′ =
(V(K2) − {x}) ∪ (V(Ka) − {y}), where x ∈ V(K2) and y ∈ V(Ka). Since a < b ≤ p − 3, S is an
independent set of G and it is clear that every vertex of V(G) − S lies on a u − v geodesic for some u
in S and v in S ′. Hence S ′ is an S -fixed geodetic set of G and so gi f (G) = |S ′| = a. But ⟨S ′⟩ is not
connected and so cgi f (G) > a. Since every S -fixed geodetic set of G contains atleast one vertex from
each complete graphs K2 and Ka, every S -fixed connected geodetic set of G contains the cut vertices
{vp−b−1, vp−b, . . . , vp−a−2}. Let S ′′ = S ′ ∪ {vp−b−1, vp−b, . . . , vp−a−2}. It is clear that S ′′ is a minimum
S -fixed connected geodetic set of G and so cgi f (G) = |S ′′| = b. □

We know that the diameter of any connected graph lies between its radius and two times of its
radius. For that Ostrand [9] has given a realization result. Ostrand’s theorem can be extended so that
cgi f (G) can also be prescribed.

Theorem 10. For any three positive integers r, d and n with r ≤ d ≤ 2r, a connected graph G can be
identified with radius r, diameter d and the independent fixed connected geodetic number n.

Proof. If r = 1, then d = 1 or 2. If d = 1, then by Theorem 2.7, G = Kn+1 has the desired property.
Now, let d = 2. Let G be the graph obtained from the complete graphs K2 and Kn+2 by merging a
vertex of K2, say y, and a vertex of Kn+2. Then G has radius 1, diameter 2 and is shown in Figure 2.6.

x

y

z

Kn+2

Figure 2.6 : G

Let T = V(Kn+2) − {y}. If S is any independent set of G, then atleast n vertices in T lie in every
S -fixed connected geodetic set of G and so cgi f (G) ≥ n. Let S = {x, z}, where z , y in Kn+2, and let
S ′ = T − {z}. Clearly, S is an independent set of G and S ′ is the minimum S -fixed connected geodetic
set of G and so cgi f (G) = n.

Now, let r ≥ 2. We construct a graph G which meets our requirement.
Case (1) r = d. Let Kn+2 be the complete graph with vertex set V(Kn+2) = {u1, u2, . . . ,

un+2} and let C2r be the even cycle with vertex set V(C2r) = {v1, v2, . . . , v2r}. Let G be the graph
obtained from Kn+2 and C2r by merging the edge u1u2 in Kn+2 and vrvr+1 in C2r. The resultant graph
G is shown in Figure 2.7.

vr

vr+1
vr+2

v1v2v3

v2r

v2r−1

Kn+2

Figure 2.7 : G

vr−1

It can be easily verified that e(v) = r for any vertex v ∈ G and so rad G = diam G = r. Also,
T = V(Kn+2) − {u1, u2} is the set of all simplicial vertices of G and any independent set of G contains
atmost one element in T . If S is any independent set of G, then atleast n − 1 vertices in T lie in every
S -fixed connected geodetic set of G and so cgi f (G) ≥ n − 1. Also, it is clear that all the vertices of C2r

are not on any x − y geodesic for some x ∈ V(C2r) and y ∈ T . Hence cgi f (G) > n − 1. Let S = {v1, u3}

and let S ′ = (T − {u3}) ∪ {vr+1}. Clearly, every vertex of C2r is on a v1 − vr+1 geodesic and so S ′ is an
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S -fixed geodetic set of G. Also, ⟨S ′⟩ is connected and so cgi f (G) = n.
Case (2) r < d ≤ 2r. Let Kn+1 be the complete graph with the vertex set V(Kn+1) = {u1, u2, · · · , un+1},
let Pd−r be a path with the vertex set V(Pd−r) = {v1, v2, . . . , vd−r} and let C2r be the cycle with the vertex
set V(C2r) = {w1,w2, . . . ,w2r}. Let G be the graph obtained from Kn+1, Pd−r and C2r by joining every
vertex of Kn+1 with the vertex v1 in Pd−r, and joining the vertex vd−r of Pd−r with the vertex w1 in C2r.
The graph G is shown in Figure 2.8.

u1
u2

un+1

v1 v2 vd−r
w1

w2 wr

wr+1

wr+2w2r

Kn+1

Figure 2.8 : G

It can be easily verified that r ≤ e(x) ≤ d, e(w1) = r and e(wr+1) = d. Hence rad G = r and
diam G = d. It is clear that T = V(Kn+1) is the set of all simplicial vertices of G. Then by an
argument similar to Case (1) of Theorem 2.10, we have S = {u1,wr+1} is an independent set of G and
S ′ = T − {u1} is a minimum S -fixed connected geodetic set of G. Hence cgi f (G) = n. □

3. Connected Geo-independent Number

Definition 4. The minimum (maximum) independent set required to form a cgi f -set of G is called
a connected geo-independent set (upper connected geo-independent set) of G. The cardinality of a
connected geo-independent set (upper connected geo-independent set) of G is called the connected
geo-independent number (upper connected geo-independent number) of G and is denoted by cgin(G)
(cgin+(G)).

Example 2. For the graph G given in Figure 2.1, we have cgi f (G) = 3. From Table 2.1, it can be
easily seen that S 1 = {x1, x4}, S 2 = {x1, x6}, S 3 = {x2, x4} and S 4 = {x2, x6} are the connected geo-
independent sets of G, S 5 = {x1, x4, x6} and S 6 = {x2, x4, x6} are the upper connected geo-independent
sets of G. Hence cgin(G) = 2 and cgin+(G) = 3.

The following result gives the connected geo-independent numbers and the upper connected geo-
independent numbers of certain special classes of graphs.

Result 11. (i) If G = Pp, then cgin(G) = 1 and cgin+(G) =
⌈

p
2

⌉
.

(ii) If G = K1,p−1(p ≥ 3), then cgin(G) = p − 2 and cgin+(G) = p − 1.

(iii) If G = Kp, then cgin(G) = cgin+(G) = 1.

(iv) If G = Cp, then cgin(G) = 1 and cgin+(G) =
⌊

p
2

⌋
or
⌊

p
2

⌋
− 1 according as

⌊
p
2

⌋
is odd or even.

(v) If G = Km,n (2 ≤ m ≤ n), then cgin(G) = m − 1 and cgin+(G) = n − 1.

(vi) If G = Qn (n ≥ 3), then cgin(G) = 1 and cgin+(G) = 2n−1.

The following observation is an easy consequence of some of the previous results.

Observation 12. For any connected graph G of order p ≥ 2,

(i) 1 ≤ cgin(G) ≤ cgin+(G) ≤ β(G) ≤ p − 1, where β(G) is the independence number of G.

(ii) 2 ≤ cgin(G) + cgi f (G) ≤ p and 2 ≤ cgin+(G) + cgi f (G) ≤ p.

Theorem 13. Let G be a connected graph of order p ≥ 2. Then
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(i) cgin(G) = 1 if and only if cgx(G) = cgi f (G) for some vertex x in G.

(ii) cgin(G) = p − 1 if and only if G = K2.

(iii) cgin+(G) = p − 1 if and only if G = K1,p−1.

Proof. (i) Let cgin(G) = 1. Then there exists a vertex, say x, in G with S = {x} and S ′, a minimum
S -fixed connected geodetic set of G. Hence every vertex of G is on an x − y geodesic for some
y ∈ S ′ and ⟨S ′⟩ is connected, and so S ′ is a minimum connected x-geodominating set of G. Hence
cgx(G) = |S ′| = cgi f (G). Converse is clear from the respective definitions.
(ii) Let cgin(G) = p − 1. If p = 2, then we get the required result. So, let p ≥ 3. Since the connected
graph G has p − 1 independent vertices, all the independent vertices are end vertices of G. Hence G
is a star. Then by Result 3.3(ii), cgin(G) = p − 2, but this leads to a contradiction. Conversely, let
G = K2. Then by Result 3.3(iii), cgin(G) = 1 = p − 1.
(iii) The result follows from the proof of (ii) and Result 3.3(ii). □

Problem 14. Characterize graphs G for which cgin+(G) = 1.

The following theorem gives a realization result.

Theorem 15. For any four positive integers a, b, c and n with 2 ≤ a ≤ b ≤ c, a connected graph G
can be identified with cgin(G) = a, cgin+(G) = b, β(G) = c and cgi f (G) = n.

Proof. Case (1) a = b. Let H1,H2,H3 and H4 be the complete graphs with vertex sets V(H1) =
{x, y},V(H2) = {u1, u2, . . . , uc−a+1},V(H3) = {v1, v2, . . . , va−2} and V(H4) = {w1,w2, . . . ,wn+1} respec-
tively. Let the graph G be constructed using H̄1, H̄2, H̄3 and H4 by (i) joining the vertices x and y in H̄1

with every vertex of H̄2 and (ii) joining the vertex y in H̄1 with every vertex of H̄3 ∪H4. The resultant
graph G is shown in Figure 3.1.

Figure 3.1 : G

H4

x

u1

u2

y

v1 v2 va−2
w1

w2

wn+1uc−a+1

Every independent set of G contains atmost one vertex from H4. Then atleast n vertices in the
complete graph H4 lie on every S -fixed geodetic set of G, where S is an independent set of G. Hence
cgi f (G) ≥ n. Let S = {x, v1, v2, . . . , va−2,wi} and let S ′ = V(H4)−{wi} for any i(1 ≤ i ≤ n + 1). Clearly
S is an independent set of G and every vertex of V(G) − S is on an x − s geodesic for any s ∈ S ′

and ⟨S ′⟩ is connected. Hence S ′ is an S -fixed connected geodetic set of G and so cgi f (G) = |S ′| = n.
Also, it is clear that, for any independent set S of G, every minimum S -fixed connected geodetic set
contains n vertices from H4.

Let T be any independent set of G with T ′, a T -fixed connected geodetic set of G and |T ′| =
cgi f (G) = n. Hence T ′ ⊂ V(H4). Now claim that V(H̄3) ⊆ T . If not, let z ∈ V(H̄3) and z < T . Since z
is an end vertex of G, z is not an internal vertex of any geodesic and so z ∈ T ′, which is a contradiction
to T ′ ⊂ V(H4). Hence V(H̄3) ⊆ T . Also, since cgi f (G) = n and T ′ ⊂ V(H4), exactly one vertex in H4,
say w1, belongs to T . Since w1 is adjacent to y, y < T . Then either x or ui(1 ≤ i ≤ c − a + 1) but not
both belongs to T .
Subcase (1) x ∈ T . Then every vertex of G − H̄3 is on an x − w geodesic for any w ∈ T ′ and so
T = V(H̄3) ∪ {x,w1} is an independent set of G with T ′, a T -fixed connected geodetic set of G and
|T ′| = n.
Subcase (2) ui ∈ T (1 ≤ i ≤ c − a + 1). If all the vertices ui ∈ T , then x is not an internal vertex of
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any s − t geodesic for any s ∈ T and t ∈ T ′. Hence x ∈ T ′, which is a contradiction to T ′ ⊂ V(H4).
If atleast one vertex ui < T , then ui is not an internal vertex of any s − t geodesic for any s ∈ T and
t ∈ T ′. Hence ui ∈ T ′, which is a contradiction to T ′ ⊂ V(H4). Thus Ti = V(H̄3) ∪ {x,wi}, where
wi ∈ V(H4) (1 ≤ i ≤ n + 1), is the independent set of G with T ′i = V(H4)−{wi}, the Ti-fixed connected
geodetic set of G and

∣∣∣T ′i ∣∣∣ = n. Hence cgin(G) = cgin+(G) = a.
Claim β(G) = c. It can be easily verified that Wi = V(H̄2 ∪ H̄3) ∪ {wi}, where 1 ≤ i ≤ n + 1, is a

maximum independent set of G and so β(G) = c.
Case (2) a < b. Let H1,H2,H3,H4 and H5 be the complete graphs with vertex sets V(H1) =
{x, y, z},V(H2) = {u1, u2, . . . , uc−b+1},V(H3) = {v1, v2, . . . , va−2},V(H4) = {w1,w2, . . . ,wb−a} and
V(H5) = {t1, t2, . . . , tn+1}, respectively. Let G be the graph obtained from H̄1, H̄2, H̄3, H̄4 and H5 by (i)
joining the vertices x and y in H̄1 with every vertex of H̄2, (ii) joining the vertex y in H̄1 with every
vertex of H̄3, (iii) joining the vertices y and z in H̄1 with every vertex of H̄4, and (iv) joining the vertex
z in H̄1 with every vertex of H5. The resultant graph G is shown in Figure 3.2.

x

u1

u2

y

v1 v2
va−2

w1

w2

Figure 3.2 : G

uc−b+1

t1

t2

tn+1

H5

wb−a

z

By an argument similar to Case (1), for any independent set S of G, every minimum S -fixed
connected geodetic set contains atleast n vertices from H5. Let S = V(H̄3) ∪ {x, t1} and let S ′ =
V(H5)− {t1}. Then clearly S is an independent set of G and S ′ is an S -fixed connected geodetic set of
G and so cgi f (G) = |S ′| = n.

Next, prove that cgin(G) = a. By an argument similar to Case (1), to form an S -fixed connected
geodetic set S ′ with |S ′| = n, we need all the vertices in H̄3, the vertex x in H̄1 and exactly one vertex
in H5 for S . Hence cgin(G) ≥ a. As in the above paragraph, S = V(H̄3) ∪ {x, t1} is an independent set
of G and S ′ = V(H5)−{t1} is the S -fixed connected geodetic set with |S ′| = n. Hence S is a connected
geo-independent set of G and so cgin(G) = |S | = a.

Claim that cgin+(G) = b. Let T be any independent set of G with T ′, a T -fixed connected geodetic
set of G and |T ′| = cgi f (G) = n. Then by an argument similar to Case (1), V(H̄3)∪{x, ti} ⊆ Ti,V(H5)−
{ti} = T ′i for any i (1 ≤ i ≤ n + 1), and s < Ti, where s ∈ V(H̄2) ∪ {y, z}. Let S i = V(H̄3 ∪ H̄4) ∪ {x, ti}.
Then clearly S i is a maximum independent set of G with S ′i = V(H5) − {ti}, the S i-fixed connected
geodetic set of G and

∣∣∣S ′i ∣∣∣ = n. Hence cgin+(G) = |S i| = b.
It can be easily verified that Wi = V(H̄2 ∪ H̄3 ∪ H̄4) ∪ {ti}, where 1 ≤ i ≤ n + 1, is a maximum

independent set of G and so β(G) = c. □
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